The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X 0 X X^2+2 X 0 X X^2+2 X X 1 1 1 1 X 2 X X^2 X 2 X X^2 1 1 X^2 1 1 1 0 X X^2+2 X^2+X 0 X^2+X X^2+2 X+2 2 X^2+X+2 X^2 X+2 2 X^2+X+2 X^2 X X^2+X X X+2 X X^2+X X X+2 X 0 X^2+2 0 2 X^2+2 X^2+2 X^2+X+2 X X X X^2+X+2 X X X 0 2 X^2+2 X^2 X^2 0 0 0 2 2 2 0 0 2 2 2 0 0 0 0 2 2 0 2 2 0 2 0 0 2 2 2 0 2 0 2 2 2 0 0 0 0 2 2 2 0 2 2 0 0 generates a code of length 44 over Z4[X]/(X^3+2,2X) who´s minimum homogenous weight is 42. Homogenous weight enumerator: w(x)=1x^0+6x^42+80x^43+76x^44+80x^45+8x^46+3x^48+1x^50+1x^66 The gray image is a code over GF(2) with n=352, k=8 and d=168. This code was found by Heurico 1.16 in 0.047 seconds.